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Part 1: Learning and routing

▶ Motivation & managing
expectations

▶ Background: ML, DNNs, CO

▶ GPU: strengths and weaknesses

▶ Getting started: Routing with ML

▶ Attention!

Part 2: State-of-the-art methods & frameworks

▶ Neural Large Neighborhood Search (NLNS)

▶ Efficient Active Search (EAS)

▶ Simulation-guided beam search (SGBS)

▶ Outlook: The rl4co package

Thanks to all of my co-authors on these works: André Hottung, Jinho Choo,
Yeong-Dae Kwon Jihoon Kim, Jeongwoo Jae, and Youngjune Gwon, Mridul Mahajan,

Federico Berto, Chuanbo Hua, Jinkyoo Park . . .
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Motivation

Combining ML and optimization: towards automated development

Idea: Learn how to solve an optimization problem through reinforcement learning.
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Motivation

Combining ML and optimization: towards automated development

Idea: Learn how to solve an optimization problem through reinforcement learning.

Advantages

▶ Lower barrier to entry: OR problem
turns into a data science problem

▶ Customized heuristics for the type
of instances at hand

Disadvantages

▶ Learning phase computationally
expensive; requires at least a GPU

▶ Algorithmic interpretability likely
lower than for handcrafted solutions
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Motivation

Managing expectations for learning to optimize

Expectation

▶ Query a model, get an optimal solution

▶ Solve any CO problem a user provides

▶ Scale to any problem size

Reality

▶ Query a model, get a solution, not
necessarily good

▶ Solve simple classes of problems (“easy”
side constraints!)

▶ Scale... somewhat.
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Background: ML & DNNs

“Machine learning and combinatorial
optimization”

Background:
ML & DNNs
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Background: ML & DNNs

Reinforcement learning

Wikipedia user EBatlleP

Goal: Determine a policy π for the agent to perform “actions” to minimize a loss
function L

Routing context: Learn where to go next without any previously solved instances!
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Background: ML & DNNs

Deep neural network: overview

Edges transform data according to
specified functions

Feedforward NN:

▶ Input: fixed input size / statistics about
problem

▶ Hidden layers: multi-layer perceptron

▶ Output: Softmax over available actions

Activation functions:
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Background: ML & DNNs

Why use DNNs?

Strengths:

▶ Supports structured data

▶ GPU-based training/execution

▶ Batching

Weaknesses:

▶ Require large amounts of data

▶ Prone to overfitting

▶ Non-trivial to determine architecture
/ hyperparameters

Primary strength for solving VRPs/-
COPs:

Automatic feature extraction
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Background: ML & DNNs

The transformer architecture

▶ Encoder: Assign vectors to the components of the input

▶ Context: Tells the decoder what part of the problem to address

▶ Decoder: Translates embeddings and the query into an action

▶ Action: What to do next! (node to visit, etc.)

DNN experts will argue that this is oversimplified. This image is meant to be a general view of the

encoder/decoder architecture as we will need it for routing problems.
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Background: ML & DNNs

Heuristic optimization: construction vs. improvement

Construction

“Builds” a solution one component at a
time until it is complete

Examples: GRASP, Ant colony opti-
mization, . . .

Improvement

Searches a “neighborhood” of similar so-
lutions.

Examples: Local search, large neighbor-
hood search, . . .
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GPU vs. CPU

GPUs for
Optimization

“Graphics card”
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GPU vs. CPU

CPU vs. GPU: achieving parallel computing in OR
CPU

Eric Gaba
(Wikime-

dia
Commons:
Sting)

▶ General purpose

▶ Few cores

▶ Serial processing

GPU

User
GBPublic PR

(flickr)

▶ SIMD

▶ High throughput

▶ Specialized for
graphics
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The conundrum

A conundrum for optimization

GPU parallelization does not lend itself to branch-and-bound or metaheuristics
▶ Different operations in different branches
▶ The GPU wants to do the same operation on all threads
▶ CPU/GPU combination also not effective (high latency)

The conundrum: How to efficiently use a GPU for optimization?

Note: Works from Karypis, Kumar, Mahanti, Daniels, Eckstein in the 90s tackle heuristics/B&B on

SIMD systems
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Solving VRPs with DNNs

“A wizard telling delivery trucks on a street
where to go with magic”

Solving VRPs with
DNNs
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Solving VRPs with DNNs

Solving the CVRP: Construction
RL construction: create a solution through a sequential decision process

Decide where to go next: Ask the DNN to construct a solution!
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Solving VRPs with DNNs

Encoder/decoder architecture for routing problems

Advantage of architecture: (vs. feedforward) Accepts variable sized input!

More information on the DNNs used for routing: Kool et al. (2018) “Attention, learn
to solve routing problems!”

(K. Tierney) Deep Reinforcement Learning for Vehicle Routing Problems 16/58



Solving VRPs with DNNs

Training: Supervised learning or DRL?

How can we train the model’s
weights?

Supervised learning

▶ Pro: Can train on optimal or very
good solutions (can speed up training)

▶ Con: “Traditional” OR approach
necessary

Reinforcement Learning

▶ Pro: No existing algorithm necessary

▶ Con: Approach will start out rather
dumb and must become smart

Loss/Reward function: objective function of the solution
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Solving VRPs with DNNs

Summary so far: generating a solution for the CVRP

*Note: some details missing; see later slides
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Solving VRPs with DNNs

Summary so far: generating a solution for the CVRP

Now repeat the process ignoring (masking) the node that has been visited.

Note: Some methods update their embeddings based on the current route(s). *Note:

some details missing; see later slides
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Solving VRPs with DNNs

Loss/Reward functions

Wikipedia user EBatlleP (modified)

“Standard RL”

Discounted sum of rewards:

Gt = Rt + γRt+1 + γ2Rt+2 + γ3Rt+3 + . . .

▶ Prevent agent from focusing only
on short-term gain

DRL for CO

Reward: Just use the solution’s objective
function value!

▶ Reason: We achieve complete
solutions; discounting thus
unnecessary
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Attention and transformers

“Attention is all you need. The context is
machine learning transformers.”

Attention and
transformers
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Attention and transformers

Understanding attention
Figures/math from “Attention is all you need” (Vaswani et al. (2017))

Dims: dk , dk , dv

Goal: Focus on “important” parts of the input data.

Inputs:

▶ Query (Q): What are we “looking for”?

▶ Key (K): Elements used to assess the relevance or
importance compared to the query.

▶ Value (V): Contains the actual information or content that
will be retrieved if the key matches the query.
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Attention and transformers

Understanding attention
Figures/math from “Attention is all you need” (Vaswani et al. (2017))

Dims: dk , dk , dv

Components:

▶ MatMul Matrix product of two arrays.
→ Quadratic (d2

k complexity)

▶ Scale Divide by
√
dk

▶ Mask Ignore certain parts of the input

▶ SoftMax Form a probability distribution

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V

Model weights: See next slide.
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Attention and transformers

Multi-headed attention (MHA)
Figures/math from “Attention is all you need” (Vaswani et al. (2017))

Idea: Focus “attention” on multiple aspects of the input,
rather than just one.

Components:

▶ Linear Linear transformation, see any layer in the
feed-forward network previously shown

▶ Scaled Dot-Product Attention The attention
mechanism from the previous slide

▶ Concat Concatenate everything together

Weight matrices: W V ,WK ,WQ ,WO

MHA(Q,K ,V ) = Concat(head1, . . . ,headh)W
O

where headi = Attention(QWQ
i ,KWK

i ,VW V
i )
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Attention and transformers

Attention! Learn to solve routing problems.
Kool, van Hoof, and Welling (ICLR 2019)

Key contribution: Shows how to apply the transformer model to routing problems.

From now on, this paper will be referred to as AM
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

1. Insert problem features into input layer
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

2. Embedding: Project node features into dh dimensions ( Linear )
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

3. MHA: Pass the embeddings into the attention layer: Q = K = V
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

3. MHA: Pass the embeddings into the attention layer: Q = K = V

4. Skip connections: MHA can be partially skipped (provide less-processed
information deeper in the network; reduce vanishing gradient problem)
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

4. Masking: Mask any nodes already on the tour (*Note: in AM not actually used;
encoder only runs once!)
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

5. Feedforward: Transform MHA output with ReLu activation.
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

6. Skip connections (again)
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Attention and transformers

AM: Encoder
Figure modified from Kool, van Hoof, and Welling (ICLR 2019)

7. Batch Normalization: Stabilize outputs
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Attention and transformers

AM: Encoder output

Remember the overview exam-
ple from before?

The nodes are now encoded.
Time to decode.
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Attention and transformers

AM: Decoder
Figures modified from Kool, van Hoof, and Welling (ICLR 2019)

▶ Context node: Extra, augmented node
to assist in decoding (for efficiency; see
paper)

▶ h̄(N) – Graph embedding

▶ h
(N)
i – Node embedding

▶ h
(N)
(c) – Embedding of the context node

▶ vl , vf – Trainable parameters;
placeholders for first iteration

▶ q(c) – MHA Query (context node)

▶ pi – Probability of selecting node i
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Attention and transformers

AM: Decoder
Figures modified from Kool, van Hoof, and Welling (ICLR 2019)
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Attention and transformers

AM: Examining the math
Notation from from Kool, van Hoof, and Welling (ICLR 2019)

The previous attention model defines stochastic policy p(π|s) where π is a solution
and s is a problem instance.

This is factorized and parameterized by θ as

pθ(π|s) =
n∏

t=1

pθ (πt |s,π1:t−1)

What this says

The probability of a solution π given instance s the joint probability of constructing the
solution s given pθ.
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Attention and transformers

AM: Training
Notation from from Kool, van Hoof, and Welling (ICLR 2019)

Training method: REINFORCE with “greedy rollout baseline”

Loss function:

∇L(θ|s) = Epθ(π|s) [(L(π)− b(s))∇ log pθ(π|s)]

▶ L(π) – Cost of solution π, e.g., in the TSP the tour length

▶ b(s) – “Baseline”; Goal is to reduce variance, thus speeding up learning

Options for B(s):

▶ Actor-critic

▶ Greedy rollout (Create a solution using the argmax of the decoder output)
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Attention and transformers

AM: REINFORCE (Williams, 1992) algorithm
Algorithm 1 from Kool, van Hoof, and Welling (ICLR 2019)

1: Init θ, θBL ← θ
2: for epoch = 1, . . . ,E do
3: for step = 1, . . . ,T do
4: si ← RandomInstance() ∀i ∈ {1, . . . ,B}
5: πi ← SampleRollout(si , pθ) ∀i ∈ {1, . . . ,B}
6: πBL

i ← GreedyRollout(si , pθBL) ∀i ∈ {1, . . . ,B}
7: ∇L ←

∑B
i=1

(
L(πi )− L(πBL

i )
)
∇θ log pθ(πi )

8: θ ← Adam(θ,∇L)
9: end for

10: if OneSidedPairedTTest(pθ, pθBL) < α then
11: θBL ← θ
12: end if
13: end for

Input:

▶ E – Number of epochs

▶ T – Steps per epoch

▶ B – Batch size

▶ α – Statistical significance

▶ Adam: Gradient descent
algorithm for setting model
weights by Kingama and Ba
(2015)
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Attention and transformers

We now have a policy to generate a solution. . .

(Perceived) goal of (some of the) ML community

Generate an optimal solution to a huge optimization problem in a single pass.

Use a high-level search procedure!
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SotA

Part 2
State-of-the-art methods & frameworks
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Search

“Someone searching for something with a
telescope on a boat.”

Search
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NLNS

Neural Large Neighborhood Search (NLNS)
Hottung and Tierney, Artificial Intelligence 2022 / ECAI 2020 / Distinguished Paper Award

▶ � Insights
1. Constructing from scratch has a low probability of finding great solutions.
2. Large neighborhood search (LNS) highly successful as a “traditional” OR technique

▶ ÷ Contribution Neural repair operator to construct solutions using a DNN

First, what is LNS?

Definition: LNS

A metaheuristic search technique based on the concept of iterative destroy and repair.
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NLNS

LNS: Overview

1: LNS-Min()

2: s ← StartSolution()
3: s∗ ← s
4: repeat
5: s ′ ← Repair(Destroy(s))
6: if Accept(s, s ′) then
7: s ← s ′

8: end if
9: if f (s) < f (s∗) then

10: s∗ ← s
11: end if
12: until Terminate
13: return s∗

Generate an initial solution.

(K. Tierney) Deep Reinforcement Learning for Vehicle Routing Problems 35/58



NLNS

LNS: Overview

1: LNS-Min()
2: s ← StartSolution()
3: s∗ ← s
4: repeat
5: s ′ ← Repair(Destroy(s))
6: if Accept(s, s ′) then
7: s ← s ′

8: end if
9: if f (s) < f (s∗) then

10: s∗ ← s
11: end if
12: until Terminate
13: return s∗

Destroy: remove part of the solution

Example destroy operators:

▶ Point/geographic destroy

▶ Destroy {long, short} routes
▶ SISRs (Christiaens and Vanden Berghe,

2020)
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NLNS

LNS: Overview

1: LNS-Min()
2: s ← StartSolution()
3: s∗ ← s
4: repeat
5: s ′ ← Repair(Destroy(s))
6: if Accept(s, s ′) then
7: s ← s ′

8: end if
9: if f (s) < f (s∗) then

10: s∗ ← s
11: end if
12: until Terminate
13: return s∗

Repair: rebuild a solution

Example repair operators:

▶ Greedy insertion

▶ MIP, CP, . . .
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NLNS

LNS: Overview

1: LNS-Min()
2: s ← StartSolution()
3: s∗ ← s
4: repeat
5: s ′ ← Repair(Destroy(s))

6: if Accept(s, s ′) then
7: s ← s ′

8: end if
9: if f (s) < f (s∗) then

10: s∗ ← s
11: end if
12: until Terminate
13: return s∗

Accept? Use simulated annealing metropolis
criterion to deice whether to accept or not.

▶ Note: other acceptance criteria possible
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NLNS

NLNS: Integrating DRL and LNS
Hottung and Tierney, Artificial Intelligence 2022 / ECAI 2020

Destroy step: Point-based destroy

Repair step:

▶ Apply argmax policy of model

▶ Restart rollout at depot until all routes are
complete

Iterate destroy/repair until convergence.

Source code: https://github.com/ahottung/nlns

(K. Tierney) Deep Reinforcement Learning for Vehicle Routing Problems 36/58

https://github.com/ahottung/nlns


NLNS

NLNS: Integrating DRL and LNS
Hottung and Tierney, Artificial Intelligence 2022 / ECAI 2020

⋆ Destroy step: Point-based destroy

Repair step:
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NLNS
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NLNS
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NLNS

NLNS: Integrating DRL and LNS
Hottung and Tierney, Artificial Intelligence 2022 / ECAI 2020

Destroy step: Point-based destroy

Repair step:

▶ Apply argmax policy of model

▶ Restart rollout at depot until all routes are
complete

⋆ Iterate destroy/repair until convergence.

Source code: https://github.com/ahottung/nlns
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NLNS

NLNS: The repair operator in a little more detail

▶ x0 represents the depot

▶ Create an input (x1, . . . , x5) for each end of an incomplete tour not connected to
the depot.

▶ Create an input for the end of a tour that should be connected in the current step
(here tour end 3).
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NLNS

NLNS: The repair operator in a little more detail

▶ The inputs x2 and x3 are masked.

▶ The model returns a probability value for each input that can be connected to x3.
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NLNS

NLNS: The repair operator in a little more detail

▶ The end of the tour associated with x3 is connected to the end of the tour
associated with x4.

▶ x4 is selected as the new reference input.
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NLNS

Model architecture
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NLNS

Single instance vs. batch solving

Single instance: Parallelize solving one instance.

Batch: Parallelize solving multiple instances.
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NLNS

Experimental results: NLNS on CVRP
Single instance solving

Gap to UHGS Avg. Time (s)

Inst. Set # Cust. NLNS LNS LKH3 NLNS LNS LKH3 UHGS

XE 1 100 0.32% 0.89% 2.12% 191 192 372 36
XE 2 124 0.55% 1.45% 2.33% 191 192 444 64
XE 3 128 0.44% 2.05% 0.54% 190 192 122 74
XE 4 161 0.72% 8.11% 0.78% 191 194 32 54
XE 5 180 0.58% 2.58% 0.16% 191 193 65 86
XE 6 185 1.09% 12.14% 1.15% 191 195 100 101
XE 7 199 2.03% 5.78% 0.72% 191 195 215 142
XE 8 203 0.51% 2.68% 1.37% 612 618 123 103
XE 9 213 2.26% 7.37% 1.09% 613 624 66 145
XE 10 218 0.04% 1.83% 0.08% 612 616 112 138

UHGS: Vidal et al. (2012) LKH3: Helsgaun (2017)

(K. Tierney) Deep Reinforcement Learning for Vehicle Routing Problems 40/58



Efficient Active Search

“A detective searching.”

Efficient active
search
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Efficient Active Search

(Efficient) active search

Active Search

Bello et al. (2016) propose active search, which adjusts the weights of a (trained)
model with respect to a single instance at test time using reinforcement learning.

Disadvantage: Fine-tuning a model for each instance is computationally expensive.
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Efficient Active Search

Towards efficient active search
Hottung, Kwon and Tierney (ICLR 2022)

▶ � Insight: Why adjust all encoder and decoder weights during active search?

▶ ÷ Contribution: We evaluate three different strategies that only change a
small subset of (model) parameters.

Source code: https://github.com/ahottung/EAS
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Efficient Active Search

EAS Strategy 1: Added layer updates

EAS-Lay:

1. Add instance-specific residual layers to the decoder

2. Update only these layers during the search

Improves batch search performance:

▶ Compute gradients only up to the new layer

▶ Most network weights are shared across instances

▶ Most network operations can be applied identically across instances
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Efficient Active Search

EAS Strategy 2: Embedding updates

EAS-Emb:

1. Update the instance embeddings using reinforcement learning

Improves batch search performance:

▶ All network weights are shared across instances

▶ All network operations can be applied identically across instances
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Efficient Active Search

EAS embedding updates: loss function
Notation modified from Hottung et al. 2022

Let ω̂ be a subset of the embeddings ω.

∇LRL(ω̂) = Eπ [(L(π)− b(s))∇ log qθ(π|ω̂)] where qθ(π|ω̂) ≡
T∏
t=1

qθ(at |st , ω̂)

We further define an imitation loss for the best solution found so far:

∇LIL(ω̂) = −∇ω̂ log qθ(π̄)|ω̂ ≡ −∇ω̂ log
T∏
t=1

qθ(āt |st , ω̂)

∇LRIL(ω̂) = ∇LRL(ω̂) + λ∇LIL(ω̂)

Notation:

▶ at , st – Action, state at time t

▶ π̄ – Best solution found in current
sample

▶ āt – Action of best solution at time t

▶ λ – Adjustable parameter (RL vs. IL
loss)
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Efficient Active Search

EAS Strategy 3: Tabular updates

EAS-Tab:

▶ Use a lookup table Q to modify the policy of a given model

pθ(at |st)α · Qg(st ,at)

▶ The table Q is updated using a simple formula. No backpropagation is needed.
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SGBS

“Illuminating a tree in the night”

Simulation-guided
Beam Search
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SGBS

Further enhancing search: simulation-guided beam search
Joint work with Jinho Choo, Yeong-Dae Kwon Jihoon Kim, Jeongwoo Jae, André Hottung, and Youngjune Gwon
(NeurIPS 2022)

▶ � Insight: Models make stupid mistakes with high confidence (overconfidence)
▶ ÷ Contribution: Overcome mistakes with beam search with simulations to

evaluate the quality of nodes

Source code: https://github.com/yd-kwon/sgbs
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SGBS

Beam search

What is beam search?

1. Width-limited breadth first.

2. Only investigate the best b nodes
(“beam”) in each layer

GPU advantage:

▶ Fixed width allows for easy batching

Weakness:

▶ Arguably better search strategies exist
(least discrepancy, DFS,. . . )
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SGBS

SGBS: Three phases

Expansion Simulation Pruning

1. Expand highest ranked nodes (by model) within the beam width

2. Simulate the candidate nodes (argmax rollout)

3. Prune down to the beam width

4. Optional: After solving, use EAS to improve model
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Experimental results

SGBS/EAS experimental results on TSP

Method
Test (10K instances) Generalization (1K instances)

n = 100 n = 150 n = 200
Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
S
P

Concorde 7.765 - (82m) 9.346 - (17m) 10.687 - (31m)
LKH3 7.765 0.000% (8h) 9.346 0.000% (99m) 10.687 0.000% (3h)

DACT 7.771 0.089% (8h)
DPDP 7.765 0.004% (2h) 9.434 0.937% (44m) 11.154 4.370% (74m)
POMO greedy 7.776 0.144% (1m) 9.397 0.544% (<1m) 10.843 1.459% (1m)
sampling 7.771 0.078% (3h) 9.378 0.335% (1h) 10.838 1.417% (3h)
EAS 7.769 0.053% (3h) 9.363 0.172% (1h) 10.731 0.413% (3h)

7.768 0.044% (15h) 9.358 0.127% (10h) 10.719 0.302% (30h)

SGBS (10,10) 7.769 0.058% (9m) 9.367 0.220% (8m) 10.753 0.619% (14m)
SGBS+EAS 7.767 0.035% (3h) 9.359 0.136% (1h) 10.727 0.378% (3h)

7.766 0.024% (15h) 9.354 0.085% (10h) 10.708 0.196% (30h)
Training n = 100 instances
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Experimental results

Experimental results: EAS/SGBS on CVRP

“Traditional OR”

“Learned models”

Method
Test (10K instances) Generalization (1K instances)

n = 100 n = 150 n = 200
Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 - (54h) 19.055 - (9h) 21.766 - (17h)
LKH3 15.646 0.53% (6d) 19.222 0.88% (20h) 22.003 1.09% (25h)

DACT 15.747 1.18% (22h) 19.594 2.83% (16h) 23.297 7.03% (18h)
NLNS 15.994 2.77% (1h) 19.962 4.76% (12m) 23.021 5.76% (24m)
DPDP 15.627 0.41% (23h) 19.312 1.35% (5h) 22.263 2.28% (9h)
POMO greedy 15.763 1.29% (2m) 19.636 3.05% (1m) 22.896 5.19% (1m)
sampling 15.663 0.64% (6h) 19.478 2.22% (2h) 23.176 6.48% (5h)

EAS 15.618 0.35% (6h) 19.205 0.79% (2h) 22.023 1.18% (5h)
15.599 0.23% (30h) 19.157 0.54% (20h) 21.980 0.98% (50h)

SGBS (4,4) 15.659 0.62% (10m) 19.426 1.95% (4m) 22.567 3.68% (9m)
SGBS+EAS 15.594 0.20% (6h) 19.168 0.60% (2h) 21.988 1.02% (5h)

15.580 0.11% (30h) 19.101 0.24% (20h) 21.853 0.40% (50h)

Training n = 100 instances Experimental
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Experimental results

Experimental results: Flow shop scheduling

Method
FFSP20 FFSP50 FFSP100

Obj. Gap Time Obj. Gap Time Obj. Gap Time

CPLEX (60s) 46.37 22.07 (17h) × ×
CPLEX (600s) 36.56 12.26 (167h)

Genetic Algorithm 30.57 6.27 (56h) 56.37 8.02 (128h) 98.69 10.46 (232h)
Particle Swarm Opt. 29.07 4.77 (104h) 55.11 6.76 (208h) 97.32 9.09 (384h)

MatNet greedy 25.38 1.08 (3m) 49.63 1.28 (8m) 89.70 1.47 (23m)
sampling 24.60 0.30 (10h) 48.78 0.43 (20h) 88.95 0.72 (40h)

EAS 24.60 0.30 (10h) 48.91 0.56 (20h) 88.94 0.71 (40h)
24.44 0.14 (50h) 48.56 0.21 (100h) 88.57 0.34 (200h)

SGBS (5,6) 24.96 0.66 (12m) 49.13 0.78 (47m) 89.21 0.98 (3h)
SGBS+EAS 24.52 0.22 (10h) 48.60 0.25 (20h) 88.56 0.33 (40h)

24.30 - (50h) 48.35 - (100h) 88.23 - (200h)

Training: FFSP20 instances
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Experimental results

Final note: RL4CO module

By Federico Berto and Chuanbo Hua and Junyoung Park and Minsu Kim and Hyeonah
Kim and Jiwoo Son and Haeyeon Kim and Joungho Kim and Jinkyoo Park

https://github.com/kaist-silab/rl4co
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Experimental results

Summary

▶ DRL can perform heuristic decision making to solve routing
problems (and a whole lot more problems!)

▶ Algorithms can be learned for solving specific datasets
▶ Learned methods have almost reached the OR state of the

art
▶ And on container pre-marshalling, we beat traditional OR

methods! See: https://arxiv.org/abs/1709.09972
(Deep learning-assisted heuristic tree search)

▶ Search is an essential component of any learned technique,
don’t skip it!

Thanks for listening! Questions?
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Extra stuff

Our papers
On deep learning for CO

Deep-learning assisted
heuristic tree search
(DLTS) (C&OR 2020)

Neural Large Neighbor-
hood Search (NLNS)
(ECAI 2020 / AIJ 2022)

CVAE-Opt (ICLR 2020)

EAS (ICLR 2021) SGBS (NeurIPS 2022) AI4TSP (LION 2022)
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Extra stuff

Additional literature

▶ Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. “Pointer networks.”
Advances in neural information processing systems 28 (2015).

▶ Kool, Wouter, Herke van Hoof, and Max Welling. “Attention, Learn to Solve
Routing Problems!” ICLR 2019.

▶ Kwon, Yeong-Dae, et al. “POMO: Policy optimization with multiple optima for
reinforcement learning.” Advances in Neural Information Processing Systems 33
(2020).

▶ Hottung, André, and Kevin Tierney. “Neural Large Neighborhood Search for the
Capacitated Vehicle Routing Problem.” ECAI 2020.

▶ Hottung, André, Yeong-Dae Kwon, and Kevin Tierney. “Efficient Active Search
for Combinatorial Optimization Problems.” ICLR 2021.

▶ Choo et al. (2022). “Simulation-guided Beam Search for Neural Combinatorial
Optimization.” NeurIPS 2022.
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